On the Charney-Davis and Neggers-Stanley conjectures

نویسندگان

  • Victor Reiner
  • Volkmar Welker
چکیده

For a graded naturally labelled poset P , it is shown that the P -Eulerian polynomial

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counterexamples to the Poset Conjectures of Neggers, Stanley, and Stembridge

We provide the first counterexamples to Neggers’ 1978 conjecture and Stembridge’s 1997 conjecture that the generating functions for descents and peaks in the linear extensions of naturally labeled posets should have all real zeros. We also provide minimum-sized counterexamples to a generalization of the Neggers conjecture due to Stanley that was recently disproved by Brändén.

متن کامل

On Operators on Polynomials Preserving Real-Rootedness and the Neggers-Stanley Conjecture

We refine a technique used in a paper by Schur on real-rooted polynomials. This amounts to an extension of a theorem of Wagner on Hadamard products of Pólya frequency sequences. We also apply our results to polynomials for which the Neggers-Stanley Conjecture is known to hold. More precisely, we settle interlacing properties for E-polynomials of series-parallel posets and column-strict labelled...

متن کامل

The Charney-Davis Conjecture for Certain Subdivisions of Spheres

Notions of sesquiconstructible complexes and odd iterated stellar subdivisions are introduced, and some of their basic properties are verified. The Charney-Davis conjecture is then proven for odd iterated stellar subdivisions of sesquiconstructible balls and spheres.

متن کامل

Counterexamples to the Neggers-stanley Conjecture

The Neggers-Stanley conjecture asserts that the polynomial counting the linear extensions of a labeled finite partially ordered set by the number of descents has real zeros only. We provide counterexamples to this conjecture. A finite partially ordered set (poset) P of cardinality p is said to be labeled if its elements are identified with the integers 1, 2, . . . , p. We will use the symbol ≺ ...

متن کامل

Euler characteristics of generalized Haken manifolds

Haken n–manifolds have been defined and studied by B. Foozwell and H. Rubinstein in analogy with the classical Haken manifolds of dimension 3, based upon the the theory of boundary patterns developed by K. Johannson. The Euler characteristic of a Haken manifold is analyzed and shown to be equal to the sum of the Charney-Davis invariants of the duals of the boundary complexes of the n–cells at t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 109  شماره 

صفحات  -

تاریخ انتشار 2005